0,5^{3x}\\x^2-4<3x\\ x^2-3x-4<0\\(x-4)(x+1)<0 \\ x\in[-1;4]\\(-1+0+1+2+3+4):6=9:6=1,5" alt="7^{3x+4} \geq 1\\7^{3x+4} \geq 7^0\\3x+4 \geq 0\\3x \geq -4|:3\\x \geq -1 \frac{1}{3}\\x\in[1 \frac{1}{3};+\infty)\\\\7^{x-1} \leq \sqrt{7}\\7^{x-1} \leq 7^{0,5}\\x-1 \leq 0,5\\x \leq 1,5\\x\in(-\infty;1,5]\\\\0,5^{x^2-4}>0,5^{3x}\\x^2-4<3x\\ x^2-3x-4<0\\(x-4)(x+1)<0 \\ x\in[-1;4]\\(-1+0+1+2+3+4):6=9:6=1,5" align="absmiddle" class="latex-formula">