** высоте равнобедренного треугольника АВС, проведенной к основанию АС, взята точка Р, а...

0 голосов
328 просмотров

На высоте равнобедренного треугольника АВС, проведенной к основанию АС, взята точка Р, а на сторонах АВ и ВС – точки М и К соответственно (точки М,Р и


К не лежат на одной прямой). Известно, что ВМ = ВК. Докажите, что: а) углы ВМР и ВКР равны; б) углы КМР и РКМ равны


Геометрия | 328 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А) Рассмотрим треуг-ки ВМР и ВКР. Они равны по двум сторонам и углу между ними:
- ВМ=ВК по условию;
- ВР - общая сторона;
- углы МВР и КВР равны, т.к. в равнобедренном треуг-ке АВС высота, проведенная к основанию, является также биссектрисой.
У равных треугольников соответственные углы ВМР и ВКР равны.

б) Треугольники МРО и КРО также равны по двум сторонам и углу между ними:
- МР=КР, т.к. треуг-ки ВМР и ВКР равны (как было доказано выше); 
- ОР - общая сторона;
- углы ВРМ и ВРК равны как соответственные у равных треуг-ов ВМР и ВКР. 
У равных треугольников МРО и КРО равны соответственные углы КМР и МКР.


image
(7.1k баллов)