ABCD - трапеция, АВ - верхнее основание и диаметр окружности
окружность пересекает диагонали в точках К и Е, причем DК=КВ, АЕ=АС.
Очевидно, что высота трапеции АН равна радиуса окружности, или АВ/2
уголАКВ = 90, т.к. опирается на диаметр
АК - медиана и высота треугольника DAB ⇒ ΔDAB равнобедренный ⇒ DA = AB.
AH=AB/2 ⇒ AH=DA/2, т.е. катет прямоугольного треугольника DHA равен половине гипотенузы ⇒ угол напротив него равен 30 градусов.
угол D трапеции = 30, тогда угол А = 150
аналогично доказывается, что угол С = 30, угол В = 150