Через середину О отрезка АВ проведена прямая,перпендикулярная прямой АВ.Докажите,что...

0 голосов
84 просмотров

Через середину О отрезка АВ проведена прямая,перпендикулярная прямой АВ.Докажите,что каждая точка X этой прямой одинаково удалена от точек А и В.


Геометрия (20 баллов) | 84 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

здесь работает признак равенства треугольника, не помню номера но ты поймешь, 

соединим точку A и x, ну и B и x соответственно тоже, образовалось 2 треугольника:

AOX и BOX. стороны АО и ВО равны по условию( точка О середина АВ) , а так-же присутствует общая сторона ОХ, ну и углы при вершине О у этих двух треугольников по 90 град. ( ОХ-перпендикуляр по условию) => эти треуг. = 

=>соответственные стороны у них = из этого можно сделать прямой вывод, что АХ=ВХ

 

=> этот значок не улыбка, он обозначает слово ''следовательно''(ну так, на всякий случай)

(124 баллов)
0 голосов

рассматриваем каждый раз два прямоугольных треугольника, где катеты равны, а значит равны и гипотенузы. Катеты равны, так как один общий, а второй АО=ОВ. Гипотенуза - расстояние от точки на перпендикуляре до точки А или В. 

(15.8k баллов)
0

Треугольники равны по двум катетам.