X в квадрате +(m-2)x-(m+3)=0 при каком значении m сумма квадратов корней уравнений будет...

0 голосов
63 просмотров

X в квадрате +(m-2)x-(m+3)=0 при каком значении m сумма квадратов корней уравнений будет наименьшей?


Алгебра (15 баллов) | 63 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

x^2+(m-2)x-(m+3)=0 разложим на множители

по обратной теореме Виета

x1+x2=2-m

x1x2=-m-3

х1,х2 - корни данного уравнения

^ - степень (в степени)

x1 ^2  +x2 ^2=(x1+x2)^2-2x1x2=(2-m)^2-2(-m-3)=4+m^2-4m+2m+6=m^2-2m+10=(m-1)^2+9>=9 (так как квадрат любого выражения неотрицателен),

откуда сумма квадратов принимает наименьшее значение 9 при m=1 (квадрат выражения (m-1)^2 равен 0 )

ответ: при m=1

(409k баллов)