1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357.
2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы:
3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60.
4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н.
Гипотенуза прямоугольного треугольника равна 10.
Высота призмы равна 288/(6+8+10)=12. вроде так)