0\\\\-2\cdot \frac{log_327}{log_3{\frac{x}{3}}} \geq log_327+log_3x+1\\\\\frac{-2\cdot log_33^3}{log_3x-log_33} \geq log_33^3+log_3x+1\\\\\frac{-2\cdot 3}{log_3x-1} \geq 3+log_3x+1\\\\t=log_3x,\; \; \frac{-6}{t-1} \geq t+4,\; \; t\ne 1\\\\a)\; esli t-1>0,t>1\; to\; -6 \geq (t-1)(t+4),\\\\t^2+3t+2 \leq 0,\; \; (t+1)(t+2) \leq 0,\; \to \; -2 \leq t \leq -1\\\\ \left \{ {{-2\leg t \leq -1,} \atop {t >1}} \right. t\in \varnothing" alt="-2log_{\frac{x}{3}}27 \geq log_3{27x}+1,\; \; OOF:\; x>0\\\\-2\cdot \frac{log_327}{log_3{\frac{x}{3}}} \geq log_327+log_3x+1\\\\\frac{-2\cdot log_33^3}{log_3x-log_33} \geq log_33^3+log_3x+1\\\\\frac{-2\cdot 3}{log_3x-1} \geq 3+log_3x+1\\\\t=log_3x,\; \; \frac{-6}{t-1} \geq t+4,\; \; t\ne 1\\\\a)\; esli t-1>0,t>1\; to\; -6 \geq (t-1)(t+4),\\\\t^2+3t+2 \leq 0,\; \; (t+1)(t+2) \leq 0,\; \to \; -2 \leq t \leq -1\\\\ \left \{ {{-2\leg t \leq -1,} \atop {t >1}} \right. t\in \varnothing" align="absmiddle" class="latex-formula">