В равнобедренном треугольнике основание=16 см, а биссектриса проведенная к основанию=18...

0 голосов
137 просмотров

В равнобедренном треугольнике основание=16 см, а биссектриса проведенная к основанию=18 см.
Найдите медиану проведенную к боковой стороне


Геометрия (129 баллов) | 137 просмотров
Дан 1 ответ
0 голосов

Пусть треугольник АВС, АС --- основание = 16
биссектриса ВК=18 проведена к основанию и является и медианой и высотой (т.к треугольник равнобедренный) => АК=КС=8 и треугольник АКВ прямоугольный
обозначим угол АВК = альфа
тогда угол ВАС = угол ВСА = (90-альфа)
по определению синуса sin(альфа) = 8 / (2V97) = 4 / V97
найдем АВ
по т.Пифагора из треугольника АКВ: АВ^2 = 8^2+18^2 = 388
АВ = V388 = V(4*97) = 2V97
медиану (обозначим ее х), проведенную к боковой стороне (она разобьет боковую сторону на два равных отрезка по V97) можно найти по т.косинусов...
х^2 = 16^2 + (V97)^2 - 2*16*V97*cos(90-альфа) = 
256 + 97 - 32*V97*sin(альфа) = 353 - 32*V97*4 / V97 = 353 - 32*4 = 353 - 128 = 225
x = 15

(378 баллов)
0

Скажите что означает альфа??(просто с таким решением мы не решали еще)