Составить уравнения сторон треугольника, если даны одна из его вершин В(-4,-5) и...

0 голосов
453 просмотров

Составить уравнения сторон треугольника, если даны одна из его вершин В(-4,-5) и уравнения его высот (АЕ) 5x+3y-4=0 и (CD) 3x+8y+13=0


Геометрия (15 баллов) | 453 просмотров
0

какой это класс?

0

Высшая математика. Это вузовская задача.

0

блин.....

0

можно я напишу своё решение, а ты потом напишешь нарушение если не так ? тут вряд ли кто ещё напишет.....

Дан 1 ответ
0 голосов
Правильный ответ

....................


image
image
(7.4k баллов)
0

Умничка :3 Благодарю ;)

0

ну ответы хоть есть? я же так..... методом проб, изучаю пока эту тему...

0

Ответов нет. Надеюсь, что правильно

0

Нужно написать уравнение пучка прямых из точки В при условии перпендикулярности с прямой АЕ, это будет уравнение стороны ВС
уравнение пучка прямых из точки В при условии перпендикулярности с прямой СД, это будет уравнение стороны АВ
Вершины А и С находятся как точки пересечения высоты со стороной.

0

я первый раз слышу о пучках, я решала задачу по школьной программе. Тебе нужно другое решение, ставь нарушение,, и пиши админам в личку, чтоб помогли, может они разберуться.

0

Можно так: Вектор нормали (перпендикуляр к прямой) прямой АЕ: n{А;В} или n{5;3}. Этот же вектор - направляющий вектор прямой ВС. Тогда уравнение прямой по направляющему вектору и точке В(-4;-5): (x+4)/5=(y+5)/3 или 3x-5y-13=0. Это уравнение стороны ВС. Точно так же уравнение стороны АВ: (x+4)/3=(y+5)/8 или 8x-3y+17=0. Решив две системы из двух уравнений (прямых АВ и АЕ и прямых ВС и CD), находим координаты А(-1;3) и С(1;-2) и уравнение прямой АС: (X+1)/(1+1)=(y-3)/(-2-3) или 5х+2y-1=0.