Докажите, что параллелограмм, в котором высоты, проведенные из вершины тупого угла, равны, является ромбом.
Рассмотрим прямоугольные треугольники АН1В и СН2В. Зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, выразим углы АВН1 и СВН2: Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треуг-ка соответственно равен катету и прилежащему к нему острому углу другого, то такие треугольники равны. В нашем случае: - ВН1=ВН2 по условию; - углы АВН1 и СВН2 равны как показано выше. Значит, треуг-ки АН1В и СН2В равны, и АВ=СВ=СЕ=АЕ. Параллелограмм, у которого все стороны равны - ромб. АВСЕ - ромб.
слишком, слишком длинное решение. Задача доказывается в одну (!) строчку.