На тело, лежащее на наклонной плоскости с углом α, влекомое силой тяги F действуют сила трения Fтр и тангенциальная составляющая реакции опоры, направленная вниз по склону и равная mgSinα
Коль скоро под действием силы тяги F = 1800 Н тело тащат с постоянной скоростью, имеет место равенство сил:
F = Fтр + mgSinα
Отсюда можно выразить величину силы трения:
Fтр = F - mgSinα
Если тело отпустить, оно поползёт вниз под действием двух сил:
f = mgSinα - Fтр
если mgSinα > Fтр = F - mgSinα
или
2mgSinα > F (1)
Подставив в уравнение для f значение Fтр = F - mgSinα получим:
f = mgSinα - F + mgSinα = 2mgSinα - F
Откуда можно найти ускорение, с которым тело поползёт вниз по склону:
a = f/m = 2gSinα - F/m
Проверим исполнение неравенства:
2mgSinα > F
Заметим, при этом, что по условию задачи плоскость составляет с ВЕРТИКАЛЬЮ угол 85 градусов. Следовательно, угол наклона плоскости
α = 90 - Ф = 90 - 85 = 5°
Это очень малый угол.
С таким углом тангенциальная составляющая реакции опоры крайне невелика.
2mgSinα = 2*200*10*0.0872 = 348 Н < 8000 Н
Условие (1) не выполняется, значит, тангенциальная составляющая реакции опоры меньше, чем трение скольжения. Следовательно, тело НЕ будет соскальзывать со склона ни с каким ускорением (и все наши старания по выводу формулы ускорения пропали зря).