2*25^x-5*10^x+2*4^x=0
Решение 2*5^(2x) - 5*(2^x)*(5^x) + 2*(2^2x) = 0 /( 2^2x) 2*(5/2)^(2x) - 5*(5/2)^x + 2 = 0 (5/2)^x = z 2*(z^2) - 5z + 2 =0 D = 25 - 4*2*2 = 9 z1 = (5 - 3) /4 = 1/2 z2 = (5 + 3)/4 = 2 (5/2)^x = 1/2 x = log(5/2) 1/2 (5/2)^x = 2 x = log(5/2) 2