1)2-2sin²x+2sinx-2,5=0
2sin²x-2sinx+0,5=0
sinx=a
2a²-2a+0,5=0
D=4-4=0
a=2/4=1/2⇒sinx=1/2⇒x=(-1)^n *π/6+πn
2)2√3sin²x-2sinxcosx=0 /cos²x≠0
2√3tg²x-2tgx=0
2tgx(√3tgx-1)=0
tgx=0⇒x=πn
tgx=1/√3⇒x=π/6+πn
3)2(√3/2sinx-1/2cosx)=2
sin(x-π/6)=1
x-π/6=π/2+2πn⇒x=π/6+π/2+2πn=2π/3+2πn
4)sin²x+cos²x-4sinxcosx-6cos²x=0 /cos²x≠0
tg²x-4tgx-5=0
tgx=a
a²-4a-5=0
a1+a2=4 U a1*a2=-5
a1=-1⇒tgx=-1⇒x=-π/4+πn
a2=5⇒tgx=5⇒x=arctg5+πn