Пожалуйста, объясните, как решать: f ' (- 3pi/2), если f(x)= 2sinx+7cosx
F`(x)=2cosx-7sinx f`(-3π/2)=2cos(-3π/2)-7sin(-3π/2)=2*0-7*1=-7
А по какой формуле у нас 2sinx стал 2cosx?
Уже не надо, я нашла эту формулу. Спасибо!
Дано: f(x) = 2 sin x + 7 cos x. Найти f '(x), если х = - 3 pi / 2. Найдем производную и подставим в нее значение х = - 3 pi/2. f '(x) = 2 cos x - 7 sin x; f '((-3pi/2) = 2 * cos(-3pi/2) - 7*sin(-3pi/2) = 2 * 0 - 7* 1 = 0 - 7 = - 7