Решите уравнение, предварительно разложив его ** множители:

0 голосов
51 просмотров

Решите уравнение, предварительно разложив его на множители:


image

Алгебра (148 баллов) | 51 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Задание 280 составлено не вполне корректно - не уравнение на множители  раскладывается,а многочлен.
Кроме того, для разложения квадратного многочлена на множители надо решить уравнение, найти его корни а уже потом заменить многочлен на множители по такой схеме:
ах²+вх+с = а(х-х₁)(х-х₂), где х₁ и х₂ - корни уравнения.
1) х²-4х-5 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-4)^2-4*1*(-5)=16-4*(-5)=16-(-4*5)=16-(-20)=16+20=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-4))/(2*1)=(6-(-4))/2=(6+4)/2=10/2=5;
x_2=(-√36-(-4))/(2*1)=(-6-(-4))/2=(-6+4)/2=-2/2=-1.
Отсюда 
х²-4х-5 = (х-5)(х+1).
4) 2х
²-3х+1 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-3)^2-4*2*1=9-4*2=9-8=1;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√1-(-3))/(2*2)=(1-(-3))/(2*2)=(1+3)/(2*2)=4/(2*2)=4/4=1;
x_2=(-√1-(-3))/(2*2)=(-1-(-3))/(2*2)=(-1+3)/(2*2)=2/(2*2)=2/4=0.5.
Заданный многочлен представляется в виде множителей:
 2х²-3х+1 = 2(х-1)(х-0,5) или (х-1)(2х-1)

(309k баллов)