1) В треугольнике ABC AC=BC, АB=15, АН- Высота, BH=3. Найдите cos А 2) В треугольнике ABC...

0 голосов
99 просмотров

1) В треугольнике ABC AC=BC, АB=15, АН- Высота, BH=3. Найдите cos А 2) В треугольнике ABC AB=BC, AC=4, высота CH равна 1. Найдите синус угла ACB 3) В тупоугольном треугольнике ABC AB=BC, AC=10, CH-высота, AH=6. Найдите sin ACB 4) В треугольнике ABC угол C равен 90 градусов , AB=корень из 34, BC=3. Найдите тангенс внешнего угла при вершине A


Геометрия (42 баллов) | 99 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) В треугольнике ABC AC=BC, АB=15, АН- высота; BH=3. Найдите cos А 

АС=ВС, ⇒ ∆ АВС - равнобедренный и  ∠А=∠В, значит, cos A=cos B

cos B=HB:AB=3/15=0,2

2) В треугольнике ABC AB=BC, AC=4, высота CH равна 1. Найдите синус угла ACB 

∆ АВС - равнобедренный. ⇒∠А=∠С, и синус ∠АСВ=синусу ∠СAВ

sin ∠CAB=CH:AC=1/4=0,25

3) В тупоугольном треугольнике ABC AB=BC, AC=10, CH-высота, AH=6. Найдите sin ACB

Т.к. ∆ АВС равнобедренный, углы при основании АС равны, следовательно, равны их синусы. 

sinBAC=CH:AC

По т.Пифагора СН=√(AC²-AH²)=√(100-36)=8

sinBAC=8/10=0,8 ⇒sin ACB=0,8

(Замечу, что задача не совсем корректна. Т.к. треугольник тупоугольный, высота из острого угла - вне треугольника. И СН не может быть больше наклонной ВС, тем более не может быть больше АВ+ВН, если АВ=ВС. Возможно, нужно было длину АН обозначить равной 8 или АС=ВС)

 4) В треугольнике ABC угол C равен 90 градусов , AB=корень из 34, BC=3. Найдите тангенс внешнего угла при вершине A 

Внешний угол при вершине А - смежный внутреннему углу при той же вершине. Тангенсы  смежных углов равны по величине, но имеют противоположные знаки. 

tg CAB=BC:AC

АС по т.Пифагора =√(АВ-CB)=√(34-9)=5

CAB=3/5=0,6тангенс внешнего угла при вершине А= -0,6

(228k баллов)