1) sin(x/2)=t⇒2t^2-3t+1=0⇒t1=(3+√9-8)/4=(3+1)/4=1; t2=(3-√9-8)/4=(3-1)/4=1/2
sin(x/2)=1⇒x/2=π/2+2πn⇒x=π+4πn
sin(x/2)=1/2⇒x/2=(-1)^n*π/6+πn⇒x=(-1)^n*π/3+2πn
2) 3tg^2+2tgx-1=0
tgx=t⇒3t^2+2t-1=0⇒t1=(-1+√1+3)/3=1/3; t2=(-1-√1+3)/3=-1
tgx=1/3⇒x=arctg(1/3)+πn
tgx=-1⇒x=-π/4+πn