Пусть это число А, так как оно оканчивается
цифрами 17 и делится на 17 (17 делится на 17), то представив число А в
виде A=100B+17, где B - некоторое неотрицательное целое число. Видим что
A-17=100B+17-17=100B должно делится на 17, так как 100 на 17 не
делится, то число В должно делится на 17. При данных условиях оно должно
быть наименьшим, и сумма цифр должна ровнять 17-1-7=9
Так как сумма цифр числа В равна 9, то оно делится на 9(а так как оно
делится еще на 17), НОК(9, 17)=9*17=153, значит число В равно 153, а
данное число равно
15317