1). ![a_{n}\ =\ \frac{n^2-14}{2^n},\ \ \ \ a'(n)=\frac{2n*2^n\ -\ (n^2-14)*2^n*ln2}{2^{2n}}\ = a_{n}\ =\ \frac{n^2-14}{2^n},\ \ \ \ a'(n)=\frac{2n*2^n\ -\ (n^2-14)*2^n*ln2}{2^{2n}}\ =](https://tex.z-dn.net/?f=a_%7Bn%7D%5C+%3D%5C+%5Cfrac%7Bn%5E2-14%7D%7B2%5En%7D%2C%5C+%5C+%5C+%5C+a%27%28n%29%3D%5Cfrac%7B2n%2A2%5En%5C+-%5C+%28n%5E2-14%29%2A2%5En%2Aln2%7D%7B2%5E%7B2n%7D%7D%5C+%3D)
![=\ \frac{2n-(n^2-14)ln2}{2^n}\ =\ 0,\ \ \ \ln2*n^2-2n-14ln2\ =\ 0, =\ \frac{2n-(n^2-14)ln2}{2^n}\ =\ 0,\ \ \ \ln2*n^2-2n-14ln2\ =\ 0,](https://tex.z-dn.net/?f=%3D%5C+%5Cfrac%7B2n-%28n%5E2-14%29ln2%7D%7B2%5En%7D%5C+%3D%5C+0%2C%5C+%5C+%5C+%5Cln2%2An%5E2-2n-14ln2%5C+%3D%5C+0%2C)
![D=4+56ln^22,\ \ \ \ n=\frac{2+\sqrt{4+56ln^22}}{2ln2}\ \approx\ 5,45 D=4+56ln^22,\ \ \ \ n=\frac{2+\sqrt{4+56ln^22}}{2ln2}\ \approx\ 5,45](https://tex.z-dn.net/?f=D%3D4%2B56ln%5E22%2C%5C+%5C+%5C+%5C+n%3D%5Cfrac%7B2%2B%5Csqrt%7B4%2B56ln%5E22%7D%7D%7B2ln2%7D%5C+%5Capprox%5C+5%2C45)
Значит нам надо проверить n = 5, и n = 6, и выбрать наибольшее:
Проверка показывает, что ![a_{5}\ =\ a_{6}= \ \frac{11}{32}.\ a_{5}\ =\ a_{6}= \ \frac{11}{32}.\](https://tex.z-dn.net/?f=a_%7B5%7D%5C+%3D%5C+a_%7B6%7D%3D+%5C+%5Cfrac%7B11%7D%7B32%7D.%5C+)
Ответ: ![\frac{11}{32}. \frac{11}{32}.](https://tex.z-dn.net/?f=%5Cfrac%7B11%7D%7B32%7D.)
2) Пусть х - 7-ой член последовательности, тогда х*q^7 - 14-й член последовательности, а xq^3 и xq^4 - 10-ый и 11-ый члены последовательности. Из условия получим систему:
![x\ +\ \frac{98}{x}\ =\ 21 x\ +\ \frac{98}{x}\ =\ 21](https://tex.z-dn.net/?f=x%5C+%2B%5C+%5Cfrac%7B98%7D%7Bx%7D%5C+%3D%5C+21+)
![q^7\ =\ \frac{98}{x^2} q^7\ =\ \frac{98}{x^2}](https://tex.z-dn.net/?f=q%5E7%5C+%3D%5C+%5Cfrac%7B98%7D%7Bx%5E2%7D+)
![x^2\ -\ 21x\ +\ 98\ =\ 0,\ \ \ \ x_{1}=7,\ \ \ x_{2}=14 x^2\ -\ 21x\ +\ 98\ =\ 0,\ \ \ \ x_{1}=7,\ \ \ x_{2}=14](https://tex.z-dn.net/?f=x%5E2%5C+-%5C+21x%5C+%2B%5C+98%5C+%3D%5C+0%2C%5C+%5C+%5C+%5C+x_%7B1%7D%3D7%2C%5C+%5C+%5C+x_%7B2%7D%3D14)
Тогда: ![q_{1}^7\ =\ 2,\ \ \ q_{2}^7\ =\ 0,5 q_{1}^7\ =\ 2,\ \ \ q_{2}^7\ =\ 0,5](https://tex.z-dn.net/?f=q_%7B1%7D%5E7%5C+%3D%5C+2%2C%5C+%5C+%5C+q_%7B2%7D%5E7%5C+%3D%5C+0%2C5)
Второе значение не подходит по условию возрастания последовательности.
Итак имеем: ![x\ =\ b_{7}\ =\ 7,\ \ \ \ \ \ q^7\ =\ 2,\ \ \ \ \ \ b_{14}\ =\ 14. x\ =\ b_{7}\ =\ 7,\ \ \ \ \ \ q^7\ =\ 2,\ \ \ \ \ \ b_{14}\ =\ 14.](https://tex.z-dn.net/?f=x%5C+%3D%5C+b_%7B7%7D%5C+%3D%5C+7%2C%5C+%5C+%5C+%5C+%5C+%5C+q%5E7%5C+%3D%5C+2%2C%5C+%5C+%5C+%5C+%5C+%5C+b_%7B14%7D%5C+%3D%5C+14.)
Ответ: 7; 14.