Пусть дан ромб АВСД. Через каждую вершину ромба проведём прямые параллельно его диагоналям МК и РЕ через вершины А и С соответственно и МР и КЕ через вершины В и Д. Получим четырёхугольник КМРЕ Так как диагонали ромба взаимно перпендикулярны и в точке пересечения О делятся пополам, То они разобьют прямоугольник КМРЕ на четыре равных и стороны ромба АВ, ВС. СД и АД делят каждый такой прямоугольник пополам. Тогда площадь ромба равна половине площади прямоугольника КМРЕ и равна 0,5 АС*ВД
Теорема Площадь ромба равна половине произведения его диагоналей ну и что требовалось доказать