Две бригады должны были закончить уборку урожая за 12дней. После 8дней совместной работы...

0 голосов
106 просмотров

Две бригады должны были закончить уборку урожая за 12дней. После 8дней совместной работы первая бригада получила другое задание поэтому второя бригада закончила оставшуюся часть работы за 7дней. За сколько дней могла бы убрать урожай каждая бригада , работая отдельно?
помогите


Алгебра (84 баллов) | 106 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Примем весь урожай за единицу.  
По плану нужно было выполнять в день 1:12=1/12 часть работы
После 8 дней совместной работы убрано было 
 8*1/12=8/12=2/3  и  осталось убрать 1 -2/3=1/3 часть всей работы.  
Вторая бригада закончила 1/3 часть работы за 7 дней.  
Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы.  
Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день.
 Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день. 
Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней.
1:(1/21+1/х)=12
12*(1/21+1/х)=1
12/21+12/х=1
9х=252
х=28 ( дней) 

(88 баллов)
0

а именно как писать