SABC - прав.треуг. пирамида. SO - ее высота, SK- апофема. Отезок ОК - равен 1/3 ВК (ВК-высота равностороннего тр-ка АВС).
Из прям. тр-ка SOK: ОК = кор(SKкв - SOкв) = кор(324-81) = кор243 = 9кор3.
Тогда ВК = 27кор3. Теперь найдем сторону а тр. АВС из условия, что аsin60 = BK.
а = 2ВК/кор3 = 54. Тогда Sбок = 3*[(1/2)*AC*SK] = 3*27*18 = 1458 cм^2/
Ответ: 1458 см^2.