Пусть SABC - прав. треуг. пирамида. Проведем SD перп ВС, SO перп АВС. АК перп SD. По условию АК = 3кор3, угол SDO = 60 гр.
Тогда из пр. треуг. AKD: AD = AK/sin 60 = 6 - высота правильного треуг. АВС.
OD = AD/3 = 2. Тогда из треуг. SOD высота боковой грани SD = 2/cos 60 = 4.
Сторона основания равна: ВС = AD/sin60 = 4кор3.
Теперь площадь бок пов-ти пирамиды равна:
Sбок = 3*(1/2)*ВС*SD = 24кор3.
Ответ: 24кор3