Через точку M, принадлежащую биссектрисе угла с вершиной в точке О, провели прямую,...

0 голосов
153 просмотров

Через точку M, принадлежащую биссектрисе угла с вершиной в точке О, провели прямую, перпендикулярную биссектрисе. Эта прямая пересекает стороны данного угла в точках A и B. Докажите, что AM=MB.


Геометрия (89 баллов) | 153 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Имеется два прямоугольных треугольника АМО и ВМО. Эти треугольники равны по одному из признаков равенства прямоугольных треуг-ов: если катет и прилежащий к нему острый угол одного прямоугольного треуг-ка соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. В нашем случае ОМ - общий катет, а углы АОМ и ВОМ равны, поскольку ОМ - биссектриса. У равных треугольников равны и соответственные стороны АМ и ВМ. 


image
(3.3k баллов)