![z=-6x^2+y^2-9xy+12 z=-6x^2+y^2-9xy+12](https://tex.z-dn.net/?f=z%3D-6x%5E2%2By%5E2-9xy%2B12)
І. Находим частные производные первого порядка
![z'_{x}=-12x-9y;\\ z'_{y}=2y-9x; z'_{x}=-12x-9y;\\ z'_{y}=2y-9x;](https://tex.z-dn.net/?f=z%27_%7Bx%7D%3D-12x-9y%3B%5C%5C+z%27_%7By%7D%3D2y-9x%3B)
ІІ. Ищем критические точки
![z'_{x}=0; z'_{y}=0; z'_{x}=0; z'_{y}=0;](https://tex.z-dn.net/?f=z%27_%7Bx%7D%3D0%3B+z%27_%7By%7D%3D0%3B)
![-12x-9y=0;\\ 2y-9x=0; -12x-9y=0;\\ 2y-9x=0;](https://tex.z-dn.net/?f=-12x-9y%3D0%3B%5C%5C+2y-9x%3D0%3B)
![4x+3y=0;\\ y=4.5x; 4x+3y=0;\\ y=4.5x;](https://tex.z-dn.net/?f=4x%2B3y%3D0%3B%5C%5C+y%3D4.5x%3B+)
![4x-3*4.5x=0;\\ y=4.5x 4x-3*4.5x=0;\\ y=4.5x](https://tex.z-dn.net/?f=4x-3%2A4.5x%3D0%3B%5C%5C+y%3D4.5x+)
M(0;0)- критическая точка
III. Ищем вторые производные
![z^{''}_{x^2}=-12;\\ z^{''}_{xy}=-9;\\ z^{''}_{y^2}=2 z^{''}_{x^2}=-12;\\ z^{''}_{xy}=-9;\\ z^{''}_{y^2}=2](https://tex.z-dn.net/?f=z%5E%7B%27%27%7D_%7Bx%5E2%7D%3D-12%3B%5C%5C+z%5E%7B%27%27%7D_%7Bxy%7D%3D-9%3B%5C%5C+z%5E%7B%27%27%7D_%7By%5E2%7D%3D2)
IV. Находим значение вторых производных в критической точке
![z^{''}_{x^2} (M)=-12;\\ z^{''}_{xy}(M)=-9;\\ z^{''}_{y^2}(M)=2;\\ A=-12; B=-9 ; C=2;\\ A<0; \Delta=AC-B^2=-12*2-(-9)^2=-24-81=-105<0; z^{''}_{x^2} (M)=-12;\\ z^{''}_{xy}(M)=-9;\\ z^{''}_{y^2}(M)=2;\\ A=-12; B=-9 ; C=2;\\ A<0; \Delta=AC-B^2=-12*2-(-9)^2=-24-81=-105<0;](https://tex.z-dn.net/?f=z%5E%7B%27%27%7D_%7Bx%5E2%7D+%28M%29%3D-12%3B%5C%5C+z%5E%7B%27%27%7D_%7Bxy%7D%28M%29%3D-9%3B%5C%5C+z%5E%7B%27%27%7D_%7By%5E2%7D%28M%29%3D2%3B%5C%5C+A%3D-12%3B+B%3D-9+%3B+C%3D2%3B%5C%5C+A%3C0%3B+%5CDelta%3DAC-B%5E2%3D-12%2A2-%28-9%29%5E2%3D-24-81%3D-105%3C0%3B)
следовательно в точке М экстремумов нет
ответ: данная функция экстремум не имеет