Πr²=9π⇒ r=3
πr(r+l)=24π
3(3+l)=24
9+3l=24
3l=15
l=5 см - образующая конуса.
Рассмотрим осевое сечение конуса, - равнобедренный треугольник с боковыми сторонами = l=5 см и основанием =d=2r=6. Проведем высоту h к основанию треугольника = высоте конуса.
По т. пифагора h=√5²-3²=√25-9=√16=4см
V-1/3 * π * r² * h= 1/3 *π * 9 * 4=12π см³