Срочно! Помогите пожалуйста! Знайти всі такі пари натуральних чисел(a,b), що множину...

0 голосов
21 просмотров
Срочно! Помогите пожалуйста! Знайти всі такі пари натуральних чисел(a,b), що множину натуральних чисел можна розбити на дві множини А={a1,a2...} та B={b1,b2...}так, що множини {a·a1,a·a2,...}та {b·b1,b·b2,...}співпадають.
Найти все такие пары натуральных чисел(a,b), что множество натуральных чисел можно разбить на два множества А={a1,a2...} и B={b1,b2,...} так, что множества {a·a1,a·a2,...}и {b·b1,b·b2,...}совпадают.

Математика (309 баллов) | 21 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть a = xd, b = yd (x,y - вз. просты). Пусть 1 попала в множество A и x, y ≠ 1, тогда ни для каких натуральных чисел t из множества B не выполнено a * 1 =  b * t (иначе x = y * t; и т.к. t > 1, то x и y уже не взаимно просты)
Итак, среди чисел x, y должна быть хоть одна единица. Пусть a = xb.
Если x = y = 1, то аналогично первому рассуждению придём к противоречию (пусть единица есть в одном мн-ве, тогда она должна быть и в другом).
Если b = 1, также придём к противоречию.

Докажем, что для всех x > 1 можно построить пример, удовлетворяющий условию.
Будем строить пример так: в множество A будем помещать те числа, которые содержат x в четной степени (0, 2, 4...), а в B - в нечетной (1, 3, 5...). Т.к. любое число содержит x либо в чётной, либо в нечётной степени, то получим разбиение множества натуральных чисел.
Несложно проверить, что множества x * A и B совпадают. Тогда, домножив каждый член ещё и на b, получим желаемое.

Ответ. (a, b) = (xt, t) или (t, xt), где t, x > 1.

(148k баллов)
0

спасибочки!