Доказать , что n/12+n^2/8+n^3/24 является целым числом при любом четном n

0 голосов
49 просмотров

Доказать , что n/12+n^2/8+n^3/24 является целым числом при любом четном n


Алгебра (31 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть n = 2k
n/12 + n^2/8 + n^3/24 = k/6 + k^2/2 + k^3/3 = k/6 * (1 + 3k + 2k^2) = k/6 * (k - 1)(2k - 1) = k (k - 1)(2k - 1) / 6

Осталось доказать, что при любом целом k число k (k - 1)(2k - 1) делится на 6.
1) Числа k, k - 1 - разной чётности, поэтому одно из них делится на 2, а значит, и всё произведение делится на 2.
2) Докажем делимость на 3. Пусть ни k, ни k - 1 не делятся на 3 (иначе утверждение заведомо верно). Тогда k представимо в виде k = 3m + 2, m - целое. Подставим такое k в выражение 2k - 1.
2k - 1 = 2(3m + 2) - 1 = 6m + 3 = 3(2m + 1)
То, что стоит в скобках, - целое число, поэтому 2k - 1 делится на 3.

Для завершения доказательства отметим, что если число делится на 2 и на 3, то оно делится и на 6.

(148k баллов)