A)
б) 0 ,} \atop {x-2 \neq 0;}} \right. \\
(3-x)(3+x)(x-2)>0, \\
(x+3)(x-2)(x-3)<0, \\
x\in(-\infty;-3)\cup(2;3)." alt=" \left \{ {{ \frac{9-x^2}{x-2}>0 ,} \atop {x-2 \neq 0;}} \right. \\
(3-x)(3+x)(x-2)>0, \\
(x+3)(x-2)(x-3)<0, \\
x\in(-\infty;-3)\cup(2;3)." align="absmiddle" class="latex-formula">
в) 0; \end{cases} \ \ \ \begin{cases} (x-6)(x+6) \leq 0,\\ x+5 \neq 1, \\ x>-5; \end{cases} \ \ \ \begin{cases} -6 \leq x \leq 6,\\ x \neq -4, \\ x>-5; \end{cases} \\ \begin{cases} -5 < x \leq 6,\\ x \neq -4; \end{cases} \\
x\in(-5;-4)\cup(-4;6].
" alt="\begin{cases} 36-x^2 \geq 0,\\ \log_{22}(x+5) \neq 0, \\ x+5>0; \end{cases} \ \ \ \begin{cases} (x-6)(x+6) \leq 0,\\ x+5 \neq 1, \\ x>-5; \end{cases} \ \ \ \begin{cases} -6 \leq x \leq 6,\\ x \neq -4, \\ x>-5; \end{cases} \\ \begin{cases} -5 < x \leq 6,\\ x \neq -4; \end{cases} \\
x\in(-5;-4)\cup(-4;6].
" align="absmiddle" class="latex-formula">
г) 0;}} \right. \\
x^2-x-2 \leq 0, \\
x^2-x-2 = 0, \\
x_1=-1, x_2=2, \\
(x+1)(x-2) \leq 0, \\
-1 \leq x \leq 2; \\
-\frac{\pi}{2} + 2\pi n < x <\frac{\pi}{2} + 2\pi n, n \in Z; \\
-1 \leq x < \frac{\pi}{2} , \\
x\in[-1;\frac{\pi}{2} )" alt=" \left \{ {{-x^2+x+2 \geq 0,} \atop {\cos x>0;}} \right. \\
x^2-x-2 \leq 0, \\
x^2-x-2 = 0, \\
x_1=-1, x_2=2, \\
(x+1)(x-2) \leq 0, \\
-1 \leq x \leq 2; \\
-\frac{\pi}{2} + 2\pi n < x <\frac{\pi}{2} + 2\pi n, n \in Z; \\
-1 \leq x < \frac{\pi}{2} , \\
x\in[-1;\frac{\pi}{2} )" align="absmiddle" class="latex-formula">