график первого выражения - окружность единичного радиуса с центром в начале координат,
y = p-x^2 - парабола, ветви вниз, причём абсцисса её вершины постоянна(не зависит от параметра) и равна нулю, ордината равна p
Одно решение будет, когда парабола будет касаться окружность и делать она это будет в одной точке.
Т.к. абсцисса вершины равна нулю и ветви направлены вниз, то единственный возможный вариант это касание в нижней точки окружности (0,-1), причём касаться будет вершины, т.е. ордината вершины должна быть равна -1, т.е. p = -1