1)( ∛mn² + ∛m²n) / ( ∛m² + 2∛mn +∛n²) - 2∛n + (m-n) / (∛m²- ∛n²) =
=∛mn(∛n+∛m)/(∛m+∛n)² - 2∛n +(∛m-∛n)(∛m²+
∛mn+∛n²)/(∛m-∛n)(∛m+∛n)=
=∛mn/(∛n+∛m) - 2∛n +(∛m²+∛mn+∛n²)/(∛m+∛n)=
=(∛mn-2∛mn-2∛n²+∛m²+∛mn+∛n²)/(∛m+∛n)=
(∛m²-∛n²)/(∛m+∛n)=
=
(∛m-∛n)(∛m+∛n)/(∛m+∛n)=∛m-∛n
2)(∛m-∛n)*1/(
+
)=
=(
+
)(
-
)/(
+
)=(
-
)