0,\; sin \alpha <0\; pri\; \alpha \in \frac{3\pi }{2},2\pi )\\\\sin \alpha =-\sqrt{1-cos^2 \alpha }=-\sqrt{1-\frac{25}{169}}=-\frac{12}{13}\\\\sin2 \alpha =2sin \alpha cos \alpha =-2\cdot \frac{5}{13}\cdot \frac{12}{13}=-\frac{120}{169}" alt="cos \alpha =\frac{5}{13}>0,\; sin \alpha <0\; pri\; \alpha \in \frac{3\pi }{2},2\pi )\\\\sin \alpha =-\sqrt{1-cos^2 \alpha }=-\sqrt{1-\frac{25}{169}}=-\frac{12}{13}\\\\sin2 \alpha =2sin \alpha cos \alpha =-2\cdot \frac{5}{13}\cdot \frac{12}{13}=-\frac{120}{169}" align="absmiddle" class="latex-formula">