12tg(4π/7)/ctg(π/14) ⇒π/14=x;1/ctgx=tgx;⇒12tg8x/ctgx=12tg8x·tgx=
=12(sin8x·sinx/cos8x·cosx)=
=12(1/2(cos(8x-x)-cos(8x+x)/1/2(cos(8x-x)+cos(8x+x))=
=12(cos7x-cos9x)/(cos7x+cos9x) ⇒7x=7·π/14=π/2;9x=9π/14·;⇒cosπ/2=0;⇒
12(0-cos9π/14)/(0+cos9π/14)=12·(-1/1)=-12;