Прямая параллельная плоскости тогда и только тогда, когда прямая не пересекается с плоскостью и параллельна некоторой прямой, лежащей в этой плоскости.
Прямая AD параллельна прямой BC, лежащей в плоскости BMC. Осталось доказать, что прямая AD не пересекается с BMC, то есть, не имеет с этой плоскостью общих точек. Очевидно, прямые AD и BC не имеют общих точек. Плоскости ABC и BMC пересекаются по прямой BC, то есть, все общие точки этих плоскостей лежат на ВС. Предположим, что AD пересекается с BMC в точке X, но тогда точка Х лежит как в плоскости ВМС, так и в плоскости АВС, поскольку прямая AD целиком лежит в плоскости ABC. Значит, точка Х - общая точка двух плоскостей, но тогда она лежит на прямой BC. Получили противоречие с тем, что прямые AD и BC общих точек не имеют. Значит, AD параллельна BMC.