Решите уравнение: sin^2 2x+sin^2 3x=sin^2 4x+sin^2 5x
1/2(1-cos4x)+1/2(1-cos6x)=1/2(1-cos8x)+1/2(1-cos10x) 1-cos4x+1-cos6x=1-cos8x+1-cos10x cos10x-cos6x +cos8x-cos4x=0 -2sin8xsin2x-2sin6xsin2x=0 -2sin2x(sin8x+sin6x)=0 -2sin2x*2sin7xcosx=0 sin2x=0⇒2x=πn⇒x=πn/2 sin7x=0⇒7x=πn⇒x=πn/7 cosx=0⇒x=π/2+πn