1. Решение:
Рассмотрим треугольник АВE:
В этом трeугольнике угол EАК равен углу EАD, т.к. АE-биссектриса. Но угол EАD равен также углу ВEА - как накрест лежащие углы при пересечении 2-ух параллельных прямых ВС и АD секущей АE.
Следовательно угол ВАE равен углу ВEА, а значит треугольник ВАEравнобедренный отсюда следует, что
АВ=ВE=7.
Т.к. АВСD-параллелограмм, то АВ=СD=7, ВС=АD=21.Найдем периметр параллелограмма: АВ+ВС+СD+АD=7+21+7+21= 56 см.
2. Решение:
Дано:
ABCD - ромб
Доказать:
ABCD - параллелограмм
Доказательство:
ABCD - ромб , следовательно
AB=BC=CD=AD
угол А = угол С = 90 градусов
угол А + угол В = 180 градусов , т.е. угол B =180 градусов - угол A = 90 градусов
Что и требовалось доказать.