Вообще никак не могу решить, нашел в интернете два решения,все надежды ** вас дорогие...

0 голосов
45 просмотров

Вообще никак не могу решить, нашел в интернете два решения,все надежды на вас дорогие люди!


image

Алгебра (37 баллов) | 45 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Решите задачу:

\frac{ \sqrt{x} + \sqrt{y}}{x-y} = \frac{ \sqrt{x} + \sqrt{y}}{ \sqrt{x}^{2} - \sqrt{y}^2} = \frac{ \sqrt{x} + \sqrt{y}}{( \sqrt{x} + \sqrt{y})( \sqrt{x} - \sqrt{y}) }= \frac{1}{ \sqrt{x} - \sqrt{y}}
(239k баллов)
0

А разве не все выражение нужно возводить в квадрат?

0 голосов

Решите задачу:

\frac{ \sqrt{x} + \sqrt{y} }{x-y} = \frac{\sqrt{x} + \sqrt{y} }{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y} )} = \frac{1}{ \sqrt{x} - \sqrt{y} }
(5.2k баллов)
0

А разве не все выражение нужно возводить в квадрат?

0

Спасибо