0, \\ \left \ [ {{x<-4,} \atop {x>1;}} \right. \\ x\in(-\infty;-4)\cup(1;+\infty). \\
(\sqrt{\frac{x+4}{x-1}}-\sqrt{\frac{x-1}{x+4}})^2=(\frac{5}{6})^2; \\
(\sqrt{\frac{x+4}{x-1}})^2-2\sqrt{\frac{x+4}{x-1}}\sqrt{\frac{x-1}{x+4}}+(\sqrt{\frac{x-1}{x+4}})^2=\frac{25}{36}; \\" alt=" \sqrt{\frac{x+4}{x-1}}-\sqrt{\frac{x-1}{x+4}}=\frac{5}{6}; \\
\left \{ {{\frac{x+4}{x-1}\geq0,} \atop {\frac{x-1}{x+4} \geq 0;} \right.
\begin{cases} (x+4)(x-1) \geq 0, \\ x-4 \neq 0, \\ x+1 \neq 0;\end{cases} \\ (x+4)(x-1) >0, \\ \left \ [ {{x<-4,} \atop {x>1;}} \right. \\ x\in(-\infty;-4)\cup(1;+\infty). \\
(\sqrt{\frac{x+4}{x-1}}-\sqrt{\frac{x-1}{x+4}})^2=(\frac{5}{6})^2; \\
(\sqrt{\frac{x+4}{x-1}})^2-2\sqrt{\frac{x+4}{x-1}}\sqrt{\frac{x-1}{x+4}}+(\sqrt{\frac{x-1}{x+4}})^2=\frac{25}{36}; \\" align="absmiddle" class="latex-formula">