Исследовать функцию ** мотанонность и экстремум: y= x^2 /6x+18

0 голосов
45 просмотров

Исследовать функцию на мотанонность и экстремум: y= x^2 /6x+18


Алгебра (40 баллов) | 45 просмотров
0

Если дробь даётся косой чертой, то знаменатель надо выделять скобками, Иначе возможны варианты задания: y= x^2 /(6x+18) или y= (x^2 /6x)+18.

0

y=x^2 /(6x+18)

Дано ответов: 2
0 голосов
Правильный ответ

Область определения функции. ОДЗ:Точки, в которых функция точно неопределена: x=-3
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2/(6*x+18). 
Результат: y=0. Точка: (0, 0)
Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2/(6*x+18) = 0. Решаем это уравнение  и его корни будут точками пересечения с X:
x=0. Точка: (0, 0)
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6*x^2/(6*x + 18)^2 + 2*x/(6*x + 8)=0
Решаем это уравнение и его корни будут экстремумами:x=-6. Точка: (-6, -2)x=0. Точка: (0, 0)
Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:0Максимумы функции в точках:-6Возрастает на промежутках: (-oo, -6] U [0, oo)Убывает на промежутках: [-6, 0]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=72*x^2/(6*x + 18)^3 - 24*x/(6*x + 18)^2 + 2/(6*x + 18)=0lim y'' при x->+-3
lim y'' при x->--3
(если эти пределы не равны, то точка x=-3 - точка перегиба)
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=-3. Точка: (-3, oo)
Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [-3, oo)Выпуклая на промежутках: (-oo, -3]Вертикальные асимптотыЕсть: x=-3Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с помощью предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2/(6*x+18), x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^2/(6*x+18), x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2/(6*x+18)/x, x->+oo = 1/6, значит уравнение наклонной асимптоты справа: y=1/6*xlim x^2/(6*x+18)/x, x->-oo = 1/6, значит уравнение наклонной асимптоты слева: y=1/6*xЧетность и нечетность функции:Проверим функци четна или нечетна с помощью соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2/(6*x+18) = x^2/(-6*x + 18) - Нетx^2/(6*x+18) = -(x^2/(-6*x + 18)) - Нетзначит, функция не является ни четной ни нечетной

(309k баллов)
0 голосов

Всегда положительная

(27 баллов)