Параллельные прямые АА₁ и ВВ₁ задают плоскость, которая пересекает
плоскость альфа по прямой А₁В₁.
Пусть С - середина АВ.
Прямая, проходящая через точку С,
принадлежащую плоскости (АА₁В₁), и параллельная прямой АА₁, пересечет
плоскость альфа в точке С₁, лежащей на прямой А₁В₁ (на линии пересечения
плоскостей).
Параллельные прямые отсекают на двух прямых
пропорциональные отрезки, поэтому если С - середина АВ, то и С₁ должна
быть серединой А₁В₁.
Плоский четырехугольник АА₁В₁В - трапеция, СС₁ - ее средняя линия.
Средняя линия трапеции равна полусумме оснований.
СС₁ = (АА₁ + ВВ₁)/2
8 = (5 + ВВ₁)/2
ВВ₁ = 16 - 5 = 11 см