![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%2By%3D41%7D+%5Catop+%7B%5Csqrt%7B%5Cfrac%7Bx%7D%7By%7D%7D%2B%5Csqrt%7B%5Cfrac%7By%7D%7Bx%7D%7D%3D3%7D%7D+%5Cright.%5C%5C%5C%5Ct%3D%5Csqrt%7B%5Cfrac%7Bx%7D%7By%7D%7D%2C%5C%3B+%5Cfrac%7B1%7D%7Bt%7D%3D%5Csqrt%7B%5Cfrac%7By%7D%7Bx%7D%7D%2C%5C%3B+x%5Cne+0%2C%5C%3B+y%5Cne+0%2C%5C%3B+t%3E0%5C%5C%5C%5Ct%2B%5Cfrac%7B1%7D%7Bt%7D%3D3%2C%5C%3B+t%5E2-3t%2B1%3D0%2C%5C%5C%5C%5CD%3D9-4%3D5%2C%5C%3B+t_1%3D%5Cfrac%7B3-%5Csqrt5%7D%7B2%7D%2C%5C%3B+t_2%3D%5Cfrac%7B3%2B%5Csqrt5%7D%7B2%7D%5C%5C%5C%5C%5Csqrt%7B%5Cfrac%7Bx%7D%7By%7D%7D%3D%5Cfrac%7B3-%5Csqrt5%7D%7B2%7D%2C%5C%3B+%5Cfrac%7Bx%7D%7By%7D%3D%28%5Cfrac%7B3-%5Csqrt5%7D%7B2%7D%29%5E2%3D%5Cfrac%7B14-6%5Csqrt5%7D%7B4%7D%5C%5C%5C%5Cx%2By%3D41%5C%3B+%5Cto+%5C%3B+y%3D41-x%5C%3B+%5Cto+%5C%3B+%5Cfrac%7Bx%7D%7B41-x%7D%3D%5Cfrac%7B14-6%5Csqrt5%7D%7B4%7D%5C%5C%5C%5C4x%3D%2841-x%29%2814-6%5Csqrt5%29%5C%5C%5C%5C4x%3D574-246%5Csqrrt5-14x%2B6%5Csqrt5x)
0\\\\t+\frac{1}{t}=3,\; t^2-3t+1=0,\\\\D=9-4=5,\; t_1=\frac{3-\sqrt5}{2},\; t_2=\frac{3+\sqrt5}{2}\\\\\sqrt{\frac{x}{y}}=\frac{3-\sqrt5}{2},\; \frac{x}{y}=(\frac{3-\sqrt5}{2})^2=\frac{14-6\sqrt5}{4}\\\\x+y=41\; \to \; y=41-x\; \to \; \frac{x}{41-x}=\frac{14-6\sqrt5}{4}\\\\4x=(41-x)(14-6\sqrt5)\\\\4x=574-246\sqrrt5-14x+6\sqrt5x" alt=" \left \{ {{x+y=41} \atop {\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=3}} \right.\\\\t=\sqrt{\frac{x}{y}},\; \frac{1}{t}=\sqrt{\frac{y}{x}},\; x\ne 0,\; y\ne 0,\; t>0\\\\t+\frac{1}{t}=3,\; t^2-3t+1=0,\\\\D=9-4=5,\; t_1=\frac{3-\sqrt5}{2},\; t_2=\frac{3+\sqrt5}{2}\\\\\sqrt{\frac{x}{y}}=\frac{3-\sqrt5}{2},\; \frac{x}{y}=(\frac{3-\sqrt5}{2})^2=\frac{14-6\sqrt5}{4}\\\\x+y=41\; \to \; y=41-x\; \to \; \frac{x}{41-x}=\frac{14-6\sqrt5}{4}\\\\4x=(41-x)(14-6\sqrt5)\\\\4x=574-246\sqrrt5-14x+6\sqrt5x" align="absmiddle" class="latex-formula">