В равнобедренном треугольнике боковая сторона равна 13 см, а биссектриса проведенная к...

0 голосов
66 просмотров

В равнобедренном треугольнике боковая сторона равна 13 см, а биссектриса проведенная к основанию, -12 см. Найдите радиус окружности, вписанной в этот треугольник, и радиус окружности, описанной около этого треугольника.


Геометрия (14 баллов) | 66 просмотров
Дан 1 ответ
0 голосов

Радиус описанной окружности находится по формуле R=abc/4S
S треугольника АВС=1/2*высоту*AC (назван треугольник ABC, AC- основание) 
бисектрисса пусть будет BH, по свойству, бисектрисса в равноб. треуг. является и медианой, и высотой.
треуг. ABH и СВН прямоуг. значит AH находим по пифагору: AH=5 cм
т.к. ВН и медиана, то АН=НС=10 см
S треугольника=1/2*12*10=60 см. кв. 
R=13*13*12/4*60=169/20
радиус вписанной окружности ищем по формуле: r= корень из ((p−a)(p−b)(p−c)/p) 
тут уже сама высчитаешь, там тоже дробь)

(693 баллов)
0

а можешь посчитать пж(

0

p(полупериметр)=18; r=10/3

0

извени немного не поняла,так и писать r=10/3????

0

в ответ?

0

ну можешь выделить целую часть и записать, разницы, фактически, нет