возводим обе части в квадрат
x+1 \\ x+3> (x+1)^{2} \\ x+3> x^{2} +2x+1 \\ x^{2} +2x-x+1-3<0 \\ x^{2} +x-2<0 \\ \\ D=1+8=9 \\ \sqrt{D} =3 \\ x1=(-1-3)/2=-2 \\ x2=(-1+3)/2=1 \\ \\ (x+2)(x-1)<0" alt=" 2)\sqrt{x+3} >x+1 \\ x+3> (x+1)^{2} \\ x+3> x^{2} +2x+1 \\ x^{2} +2x-x+1-3<0 \\ x^{2} +x-2<0 \\ \\ D=1+8=9 \\ \sqrt{D} =3 \\ x1=(-1-3)/2=-2 \\ x2=(-1+3)/2=1 \\ \\ (x+2)(x-1)<0" align="absmiddle" class="latex-formula">
ОДЗ
решение 1>х>-2
+ - +
.........-2.//////////////.1............
Ответ:x=(-2;1) точки 1 и 2 вырезаны.
x \\x^{2} -x-12 \geq 0 \\ \\ D=1+48=49 \\ \sqrt{49} =7 \\ \\ x1=(1+7)/2=4 \\ x2=(1-7)/2=-3 \\ \\ (x-4)(x+3) \geq 0 \\ x \geq 4 \\ x \leq -3 \\ \\ x^{2} -x-12> x^{2} \\ x^{2} - x^{2} +x+12<0 \\ x+12<0 \\ \\ x<-12 \\ \\ x \geq 4 \\ x \leq -3 \\ \\ x<-12" alt=" 3)\sqrt{ x^{2} -x-12} >x \\x^{2} -x-12 \geq 0 \\ \\ D=1+48=49 \\ \sqrt{49} =7 \\ \\ x1=(1+7)/2=4 \\ x2=(1-7)/2=-3 \\ \\ (x-4)(x+3) \geq 0 \\ x \geq 4 \\ x \leq -3 \\ \\ x^{2} -x-12> x^{2} \\ x^{2} - x^{2} +x+12<0 \\ x+12<0 \\ \\ x<-12 \\ \\ x \geq 4 \\ x \leq -3 \\ \\ x<-12" align="absmiddle" class="latex-formula">