докажите, что если через прямую а и точку А можно провести единственную плоскость, то А...

0 голосов
313 просмотров
докажите, что если через прямую а и точку А можно провести единственную плоскость, то А непринадлежит а.

Геометрия (25 баллов) | 313 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1. Через прямую и не лежащую на ней точку можно провести плоскость, притом только одну. Доказательство:
1) Рассмотрим прямую a и точку A, которая не находится на этой прямой.
2) На прямой a выберем точки B и C.
3) Так как все 3 точки не находятся на одной прямой, из второй аксиомы следует, что через точки A, B, C и  можно провести одну единственную плоскостьα.
4) Точки прямой a, B и C, лежат на плоскостиα, поэтому из третьей аксиомы следует, что плоскость проходит через прямую a и, конечно, через точку A.


image
(44 баллов)