Y= f(x) является непрерывной нечетной функцией, определенной ** всей числовой оси и 1, 3,...

0 голосов
42 просмотров

Y= f(x) является непрерывной нечетной функцией, определенной на всей числовой оси и 1, 3, 5 являются ее экстремальными точками на отрезке [0;6]. Найти сумму минимумов этой функции на [-6; 6], если y(max)= f(1)=7, f(3)=4, y(max)= f(5)=9


Алгебра | 42 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Из нечётности ф-ии следует, что f(-x) = -f(x);
Значит, если х0 из [0;6] - максимум, то -х0 из [-6;0] - минимум;
На [0;6] - 2 максимума, в точках х=1 и х=5 => x=-1 и х=-5 - минимумы, но ещё не забудем про минимум в точке х=3;
f(-5) = -f(5)=-9
f(-1) = -7
f(3) = 4
Сумма минимумов на [-6;6] = -12

(1.3k баллов)