Докажите, что середины сторон прямоугольника являются вершинами ромба.

0 голосов
32 просмотров

Докажите, что середины сторон прямоугольника являются вершинами ромба.


Геометрия (14 баллов) | 32 просмотров
Дан 1 ответ
0 голосов

 

Пусть четырёхугольник ABCD. Пусть M, N, K, L соотв. середины его сторон AB, BC, CD и AD. Тогда в треугольнике ABC: MN является средней линией, значит, равна половине диагонали BC четырёхугольника. Аналогично доказываем, что NK=1/2 AC, KL=1/2 BC, LM=1/2 AC. Но так как AC=BC получаем, что MN=NK=KL=LM.

(52 баллов)