Пожалуйста, помогите! :} 1) Равнобедренный треугольник с высотой, проведённой в...

0 голосов
48 просмотров

Пожалуйста, помогите! :} 1)
Равнобедренный треугольник с высотой, проведённой в основанию и равной 16 см, вписан в окружность радиусом 10 см. Найдите площадь треугольника и его боковую сторону.
2) Четырёхугольник MNKP вписан в окружность с диаметром MK. Найдите углы четырёхугольника, если дуга NK=140 градусов, дуга PK=100 градусов.


Геометрия | 48 просмотров
Дан 1 ответ
0 голосов
Решение:
1) а) Радиус описанной окружности около треугольника - расстояние серединного перпендикуляра от концов отрезка. Известно, что радиус равен 10 сантиметрам.
(см. рис. 1). Очевидно, из рисунка видно, что оставшаяся часть BO также является радиусом, равным 10 см. OH = 16-10=6 (см).
Рассматриваем маленький прямоугольный треугольник ΔOHA. Мы знаем его гипотенузу и катет. Нам остается только применить т. Пифагора:
\sqrt{100-64}=\sqrt{36}=6
Поскольку высота в равнобедренном треугольнике является медианой, то AH=HC=6 см. Вся часть, очевидно, равна 12 см.
Площадь равна полупроизведению основания на высоту. Поэтому, S=\frac{1}{2}*16*12 = 12*8 = 96 см².
б) Рассмотрим треугольник ΔBHA. Нам надо найти гипотенузу, используя два известных катета. Применяем теорему Пифагора:
AB = \sqrt{AH^2+BH^2} \\
AB = \sqrt{36+256} = \sqrt{292} = 2\sqrt{73} см.
Ответ: а) 96 см². б) 2√73 см
2) Угол MNK опирается прямо на дугу, следовательно, этот угол будет составлять половину от 180 градусов, т.е. угол MNK равен 90. Раз четырехугольник вписан в окружность, а по свойству вписанного четырехугольника в окружность, угол MNK будет равен углу MPK, т.е. также 90 градусов.
Найдем, чему будет равен угол MNP. Этот угол опирается на дугу PKN, градусная мера которой равна сумме 100 и 140, т.е. 240 градусов. Угол MNP будет составлять половину от этой градусной меры, т.е. 120 градусов. Отсюда мы найдем, что последний угол будет равен 60 градусов.
Ответ: 90,90,60,120

image
image
(5.9k баллов)