Квадрат вписан в круг. Найдите площадь меньшего сегмента,отсекаемого стороной квадрата,....

0 голосов
28 просмотров

Квадрат вписан в круг. Найдите площадь меньшего сегмента,отсекаемого стороной квадрата,. если длина радиуса круга равна 4см. Задача№2) Докажите,что треугольник ВСD с вершинами в точках В(5;-4), С(3;4) и D(11;2) является равнобедренным" помоги пожалуйста срочно надо на завтра


Геометрия (12 баллов) | 28 просмотров
Дан 1 ответ
0 голосов

Квадрат отсекает от окружности 4 равных сегмента, их общая площадь равна пл. круга - пл. квадрата, а чтобы найти пл. одного сегмента, нужно полученную разность разделить на 4. 
R=4 cлед. Sкруга = 16π
Диагональ квадрата - это диаметр окружности = 8, сторона квадрата = х
по Пифагору х² +х² =64
х²= 32
Sкв=32
Sсегм = (16π-32):4 = 4π - 8

2) Найдем координаты векторов
СВ(2; -8),    СD(8; -2)
Длины векторов СВ=√2²+(-8)²=√68       CD=√8²+(-2)²=√68
BC=CD , ВСD - равнобедренный

(622 баллов)