Помогите решить(тема основные понятия комбинаторик.вероятность события)

0 голосов
62 просмотров

Помогите решить(тема основные понятия комбинаторик.вероятность события)


image

Математика (16 баллов) | 62 просмотров
Дан 1 ответ
0 голосов

Элементами называются объекты, из которых составлены соединения. Различают следующие три вида соединений: перестановки, размещения и сочетания. Перестановками из n элементов называют соединения, содержащие все n элементов и отличающиеся
 Например,  Задача. На каждой из пяти одинаковых карточек напечатана одна из следующих букв: а, м, р, т, ю. Карточки тщательно перемешаны. Найти вероятность того, что на четырех вынутых по одной и расположенных “в одну линию” карточках можно будет прочесть слово “юрта”. Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 4 карточки из 5, т. е.  равно - числу размещений из 5 элементов по 4. Благоприятствует появлению слова “юрта” лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих появлению события, к числу всех  элементарных исходов между собой лишь порядком элементов.
Одним из основных понятий современных теорий массового обслуживания и надежности является понятие простейшего (пуассоновского) потока. Потоком событий называют последовательность событий, которые наступают в случайные моменты времени. Примеры потоков: поступление вызовов на АТС, поступление вызовов на пункт неотложной медицинской помощи, прибытие кораблей в порт, последовательность отказов элементов устройства. Простейшим называют поток, обладающий свойствами стационарности, отсутствием последействия и ординарности. Свойство стационарности характеризуется тем, что вероятность появления k событий за время длительностью t не зависит от начала отсчета промежутка времени, а зависит лишь от его длительности. Например, вероятности появления пяти событий на промежутках времени (1; 4), (6; 9), (8; 11) одинаковой длительности t = 3 ед. времени равны между собой. Свойство отсутствия последействия характеризуется тем; что вероятность появления k событий на любом промежутке времени не зависит от того, сколько событий появилось до начала рассматриваемого промежутка. Свойство ординарности характеризуется тем, что вероятность появления двух и более событий пренебрежимо мала, сравнительно с вероятностью появления одного события. Интенсивностью потока l называют среднее число событий, которые появляются в единицу времени. Доказано, что если известна постоянная интенсивность потока l , то вероятность появления k событий простейшего потока за время длительностью t

(72 баллов)