В треугольнике ABC с тупым углом BAC проведены высоты BB1 и CC1 . Докажите, что...

0 голосов
113 просмотров
В треугольнике ABC с тупым углом BAC проведены высоты BB1 и CC1 . Докажите, что треугольники B1AC1 и ABC подобны.

Геометрия (532 баллов) | 113 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Подобие получившихся прямоугольных треугольников доказывается легко:
прямоугольные треугольники с двумя вертикальными ((равными))) углами --- 
подобны по двум углам...
запишем соответствующую пропорцию:
ВВ1 / СС1 = АВ1 / АС1 = АВ / АС (((гипотенузы всегда пропорциональны...))) 
последнее равенство можно переписать так:
АВ1 / АВ = АС1 / АС
ведь в пропорции произведение крайних членов = произведению средних членов))) значит произведение средних членов можно записать АС1*АВ = АВ*АС1
ведь от перестановки сомножителей произведение не меняется...
т.е. равенства тождественно верны)))
но второе равенство читается так: стороны треугольника АВ1С1 пропорциональны сторонам треугольника АВС (((две стороны))), но углы между этими сторонами равны (((как вертикальные))) --- имеем второй признак подобия треугольников...
треугольники АВ1С1 и АВС подобны)))))

(237k баллов)
0

"но углы между этими сторонами равны (((как вертикальные)))" - две стороны пропорциональны, а угол между ними общий (тупой)...

0

не поняла...